570 PRELIMINARY NOTES

Reactions of metal carbonyl anions with pentafluoropyridine and pentafluorobenzonitrile

The ready reaction of nucleophiles with pentafluoropyridine¹ to give monosubstituted compounds of the type XC_5F_4N ($X = NH_2$, NR_2 , $NH-NH_2$, H, OH, OMe, $CH:CHMe,^2$ or Ph^3), and the similar, though less-thoroughly investigated, ease of nucleophilic attack on pentafluorobenzonitrile⁴, suggested that pentafluoropyridine and pentafluorobenzonitrile might be good traps for metal carbonyl anions. Reactions involving the anions $[Mn(CO)_5]^-$ and $[Re(CO)_5]^-$, now reported, occurred readily at room temperature in tetrahydrofuran, and the white crystalline, sublimable products, purified by chromatography then recrystallised, are shown in Table 1.

TABLE | INFRARED SPECTRA

Compound	M.⊅. (°C)	Yield (%)	Carbonyl stretching frequencies (cm-1)			
			A115		E	A 11a
-Mn(CO) ₅	96-97	4ó	2137 m	2075 w, sh	2045 Vs	2016 S ^a
F F Re(CO) ₅	117-113	бо	2150 m	2075 w	2046 vs	2017 sª
NC-\(\begin{picture}(F) F \\ F \\ F \\ F \\ \\ \\ \\ \\ \\ \\ \	134-135 (dec.)	56	2143 m	2088 w, sh	2054 Vs	2031 s ⁵
F F -Re(CO) ₅	152-153 (dec.)	52	2155 m	2095 w, sh	2050 vs	2036 sb

CaF. optics, solution in CCl. CaF. optics, solution in CHCl.

The compounds are stable in air for several hours, both in the solid state and in solution, and their ¹⁹F spectra (Table 2) all show characteristic symmetrical AA'XX' patterns which can only arise if substitution has occurred in the 4-position, in agreement with previously reported spectra of tetrafluoropyridine derivatives⁵. Calculation of the coupling constants was not possible due to inadequate resolution. The infrared spectra in the metal carbonyl region (Table 1) show the expected pattern⁶ for C_{4r} symmetry of a medium A_1^{1b} band and strong E and A_1^{1a} bands. The presence of a weak shoulder in the 2070–2095 cm⁻¹ region in these compounds may be due to the B_1 stretching mode normally inactive in the infrared region. This may indicate some degree of asymmetry⁷, but no splitting of the intense E band was observed.

Further support for the structure of $C_5F_4N\cdot Mn(CO)_5$ was obtained by the formation of 2,3,5,6-tetrafluoropyridine on reaction with an excess of hydrogen chloride at 100°.

TABLE 2 19F NMR SPECTRAG

Compound	δ (ppm)			
	2-F	3-F		
F F Mn(CO) ₅	17.5	31.5		
F F Re(CO) ₅	18.0	30.0		
NC	23.4	58.o		
NC—FF F	21.1	57-7		

a 35% wiv solution in CHCl3; figures quoted in ppm upfield from CF3·CO2H external reference.

We have yet to establish whether the attack of the manganese or rhenium anions on pentafluoropyridine or pentafluorobenzonitrile is more ready than the reaction of these anions with tetrafluoroethylene, hexafluoropropene or perfluorocyclohexene, although it is noteworthy that tetrafluoroethylene does not react with Mn(CO)₅ (Ref. 8). King and Bisnette⁹ showed that the salt NaMn(CO)₅ did not react with hexafluorobenzene in refluxing tetrahydrofuran.

Department of Chemistry, University of Manchester Institute of Science & Technology, Manchester (Great Britain)

В. L. Воотн R. N. HASZELDINE M. B. TAYLOR

Received August 18th, 1966

t R. E. Banks, R. N. Haszeldine, J. V. Latham and I. Young, J. Chem. Soc., (1965) 594.
2 R. E. Banks, J. E. Burgess, W. M. Cheng and R. N. Haszeldine, J. Chem. Soc., (1965) 575.
3 R. D. Chambers, J. Hutchinson and W. K. R. Musgrave, J. Chem. Soc., (1964) 5634, 3736.

⁴ Unpublished work from this department; E. FELSTEAD, H. C. FIELDING AND B. J. WAKEFIELD, J. Chem. Soc., (1966C) 708.
5 J. LEE AND K. ORRELL, J. Chem. Soc., (1965) 582.
6 L. E. ORGEL, Inorg. Chem., 1 (1962) 25.

⁷ J. B. Wilford and F. G. A. Stone, Inorg. Chem., 4 (1965) 389. S. P. W. Jolly, M. I. Bruce and F. G. A. Stone, J. Chem. Soc., (1965) 5830.

⁹ R. B. KING AND M. B. BISNETTE, J. Organometal. Chem., 2 (1964) 38.